Acier

Un acier est un alliage métallique constitué principalement de fer et de carbone (dans des proportions comprises entre 0,02 % et 2 % en masse pour le carbone). C’est essentiellement la teneur en carbone qui confère à l’alliage les propriétés de l’acier. Il existe d’autres alliages à base de fer qui ne sont pas des aciers, comme les fontes et les ferroalliages. Voir pondeuse de brique.

Classification traditionnelle de l’acier

DuretéTeneur en carbone (%)
Acier extra-doux< 0,15
Acier doux0,15 – 0,25
Acier demi-doux0,25 – 0,40
Acier demi-dur0,40 – 0,60
Acier dur0,60 – 0,70
Acier extra-dur> 0,70
Classification traditionnelle aciers

La teneur en carbone a une influence considérable (et assez complexe) sur les propriétés de l’acier : en dessous de 0,008 %, l’alliage est plutôt malléable et on parle de « fer » ; au-delà de 2,1 %, on entre dans le domaine de l’eutectique fer/carbure de fer ou bien fer/graphite, ce qui modifie profondément la température de fusion et les propriétés mécaniques de l’alliage, et l’on parle de fonte. Entre ces deux valeurs, l’augmentation de la teneur en carbone a tendance à améliorer la dureté de l’alliage et à diminuer son allongement à la rupture ; on parle d’aciers « doux, mi-doux, mi-durs, durs ou extra-durs » selon la « classification traditionnelle ».

Éléments d’alliage avec l’acier

Le carbone a une importance primordiale car c’est lui qui, associé au fer, confère à l’alliage le nom d’acier. Son influence sur les propriétés mécaniques de l’acier est prépondérante. Par exemple, en ce qui concerne l’amélioration de la propriété de dureté, l’addition de carbone est trente fois plus efficace que l’addition de manganèse.

L’aluminium : excellent désoxydant. Associé à l’oxygène, réduit la croissance du grain en phase austénitique. Au-delà d’un certain seuil, il peut rendre l’acier inapte à la galvanisation à chaud.

Le manganèse : forme des sulfures qui améliorent l’usinabilité. Augmente modérément la trempabilité.

Le cobalt : utilisé dans de nombreux alliages magnétiques. Provoque une résistance à l’adoucissement lors du revenu.

Le chrome : c’est l’élément d’addition qui confère à l’acier la propriété de résistance mécanique à chaud et à l’oxydation (aciers réfractaires). Il joue aussi un rôle déterminant dans la résistance à la corrosion lorsqu’il est présent à une teneur de plus de 12 à 13 % (selon la teneur en carbone). Additionné de 0,5 % à 9 % il augmente la trempabilité et la conservation des propriétés mécaniques aux températures supérieures à l’ambiante (famille des aciers alliés au chrome). Il a un rôle alphagène.

Le molybdène : augmente la température de surchauffe, la résistance à haute température et la résistance au fluage. Augmente la trempabilité.

Le nickel : rend austénitiques (rôle gammagène) les aciers à forte teneur en chrome. Sert à produire des aciers de trempabilité modérée ou élevée (selon les autres éléments présents), à basse température d’austénitisation et à ténacité élevée après traitement de revenu. C’est l’élément d’alliage par excellence pour l’élaboration des aciers ductiles à basses températures (acier à 9 % Ni pour la construction des réservoirs cryogéniques, acier à 36 % Ni dit « Invar » pour la construction des cuves de méthaniers et des instruments de mesure de précision).

Le niobium : même avantage que le titane mais beaucoup moins volatil. Dans le domaine du soudage il le remplace donc dans les métaux d’apport.

Le phosphore : augmente fortement la trempabilité. Augmente la résistance à la corrosion. Peut contribuer à la fragilité de revenu.

Le silicium : favorise l’orientation cristalline requise pour la fabrication d’un acier magnétique, augmente la résistivité électrique. Améliore la résistance à l’oxydation de certains aciers réfractaires. Utilisé comme élément désoxydant.

Le titane : pouvoir carburigène élevé (comme le niobium) et réduit donc la dureté de la martensite. Capture le carbone en solution à haute température et, de ce fait, réduit le risque de corrosion intergranulaire des aciers inoxydables (TiC se forme avant Cr23C6 et évite donc l’appauvrissement en chrome au joint de grain).

Le tungstène : améliore la dureté à haute température des aciers trempés revenus. Fonctions sensiblement identiques à celles du molybdène.

Le vanadium : augmente la trempabilité. Élève la température de surchauffe. Provoque une résistance à l’adoucissement par revenu (effet de durcissement secondaire marqué).

Constitution de l’acier

L’acier est élaboré pour résister à des sollicitations mécaniques ou chimiques ou une combinaison des deux.

Pour résister à ces sollicitations, des éléments chimiques peuvent être ajoutés à sa composition en plus du carbone. Ces éléments sont appelés éléments d’additions, les principaux sont le manganèse (Mn), le chrome (Cr), le nickel (Ni), le molybdène (Mo).

Les éléments chimiques présents dans l’acier peuvent être classés en trois catégories :

  • les impuretés, originellement présentes dans les ingrédients de haut fourneau qui serviront à produire la fonte qui servira à fabriquer l’acier. Ce sont le soufre (S) et le phosphore (P) présent dans le coke mais aussi le plomb (Pb) et l’étain (Sn) qui peuvent être présents dans les aciers de récupération ainsi que nombre d’autres éléments à bas point de fusion comme l’arsenic (As), l’antimoine (Sb).

Pour des raisons mal comprises, le plomb est dans certaines circonstances (dans l’industrie nucléaire notamment) un « contaminant métallurgique » qui peut contribuer à la dissolution, l’oxydation et la fragilisation d’aciers qui sont exposés aux alliages de plomb;

  • les éléments d’addition mentionnés plus haut et qui sont ajoutés de manière intentionnelle pour conférer au matériau les propriétés recherchées, et enfin ;
  • les éléments d’accompagnement que l’aciériste utilise en vue de maîtriser les diverses réactions physico-chimiques nécessaires pour obtenir finalement un acier conforme à la spécification. C’est le cas d’éléments comme l’aluminium, le silicium, le calcium.

Propriétés et caractéristiques

L’acier est un alliage essentiellement composé de fer, sa densité varie donc autour de celle du fer (7,32 à 7,86), suivant sa composition chimique et ses traitements thermiques. La densité d’un acier inox austénitique est typiquement un peu supérieure à 8, en raison de la structure cristalline. Par exemple, la densité d’un acier inoxydable de type AISI 304 (X2CrNi18-10) est environ 8,02.

Les aciers ont un module de Young d’environ 200 GPa (200 milliards de pascals), indépendamment de leur composition. Les autres propriétés varient énormément en fonction de leur composition, du traitement thermomécanique et des traitements de surface auxquels ils ont été soumis.

Le coefficient de dilatation thermique de l’acier vaut 11,7×10-6 °C-1.

Le traitement thermomécanique est l’association :

  • d’un traitement thermique, sous la forme d’un cycle chauffage-refroidissement (trempe, revenu, etc.) ;
  • d’un traitement mécanique, une déformation provoquant de l’écrouissage (laminage, forgeage, tréfilage, etc.).

Le traitement de surface consiste à modifier la composition chimique ou la structure d’une couche extérieure d’acier. Cela peut être :

  • une réaction en phase liquide (chromatation, carburation, nitruration en bain de sel, galvanisation, parkérisation, etc.) ;
  • une réaction en phase gazeuse (nitruration en phase liquide) ;
  • une projection d’ions (implantation ionique) ;
  • un recouvrement (peinture, émail).

Les type d’armature

Le type d’armature le plus courant est l’acier au carbone, généralement composé de barres rondes laminées à chaud avec des motifs de déformation. D’autres types facilement disponibles comprennent l’acier inoxydable et les barres composites en fibre de verre, fibre de carbone ou fibre de basalte. Les barres d’armature en acier peuvent également être revêtues d’une résine époxy conçue pour résister aux effets de la corrosion principalement dans les environnements d’eau salée, mais également des constructions terrestres.

Demande de devis de Barre d’armature et autre

Merci de remplir le formulaire ci-dessous, nous vous enverrons le devis dès que possible.


  • Dernière modification de la publication :03/05/2021